ACCELERATING DIFFUSION MODELS VIA PRESEGMENTATION DIFFUSION SAMPLING FOR MEDICAL IMAGE SEGMENTATION 论文阅读
date
Dec 10, 2022
Last edited time
Mar 27, 2023 08:40 AM
status
Published
slug
ACCELERATING_DIFFUSION_MODELS_VIA_PRESEGMENTATION_DIFFUSION_SAMPLING_FOR_MEDICAL_IMAGE_SEGMENTATION论文阅读
tags
DL
DDPM
summary
type
Post
Field
Plat
Abstract
- Problem
DDPM requires many iterative denoising steps to generate segmentations from Gaussian noise, resulting in extremely inefficient inference.
- Method
The key idea is to obtain pre-segmentation results based on a separately trained segmentation network, and construct noise predictions (non-Gaussian distribution) according to the forward diffusion rule. We can then start with noisy predictions and use fewer reverse steps to generate segmentation results.
Method
没什么好说的, 其实就是说如果在训练, 流程在上面的那张图已经说完了.
值得注意的是, 扩散过程中 是从得到的, 而其训练去噪的目标是 GT . 这样就避免了模型只学会从 形状过于准确而只会从 来预测 的情况.